

A Multi-Method Analysis of c-erbB2/HER2 in FFPE Tissue:

Comparison of a Novel Rapid *in situ* Hybridization Procedure (RISH[™]), HER2 CISH and IHC.

David Tacha, Javier Alba Dominguez, Javier Gutierrez Bernal, Jesus Alba, Rhonda Henshall-Powell, Joe Vargas, Casey DeGolia, Ainura Kyshtoobayeva Biocare Medical LLC, Concord, CA; Universidade De Santiago De Compostela, Spain; POLUSA Medical Center, Spain; Clarient, Inc., Aliso Viejo USA.

A Multi-Method Analysis of c-erbB2/HER2 in FFPE Tissue:

Comparison of a Novel Rapid in situ Hybridization Procedure (RISH™), HER2 CISH and IHC.

Rabbit Monoclonal c-erbB2 2+/3+ (IHC)

HerceptTest 1+/2+ (IHC)

HER2 CISH Amplification

Background

c-erbB2 is denominated as such as it corresponds to the human homologue of a viral gene that causes leukemia erythroblastosis in birds. This gene was isolated in a neuroblastoma/glioblastoma rat cell colony and for this reason it is also known as HER2/*neu*. This gene codes for a tyrosine kinase receptor located in the cytoplasmic membrane and for whom the ligand is still unknown.

c-erbB2 protein belongs to a family of receptors whose principle member is EGFR (epidermal growth factor receptor) also known as c-erbB1. This family is made up of four members (c-erbB1, c-erbB2, c-erbB3 and c-erbB4) that share great internal homology. Due to this homology, antibodies targeted against this family of proteins can cross react with other members.

Over-expression of HER2/*neu* gene or protein is found in 20% to 30% of breast carcinomas and is predictive of response to treatment by Herceptin[®] (trastuzumab). Methods such as FISH or CISH determine gene amplification status, however, amplified genes may or may not be all transcribed at equivalent levels. Recently, a new c-erbB2 probe for a faster *in situ* hybridization (RISH[™]) has been developed. This probe consists of 2 fragments of single-stranded DNA with lengths of 672 and 1143 nucleotides that are targeted against mRNA sequences transcribed from the HER2/*neu* gene. The extended probe sequence confers increased specificity, sensitivity and speed of reaction with the target mRNA.

In this study, the correlation of the RISH[™] method to FDA approved IHC and HER2 CISH methods and a method employing a rabbit monoclonal antibody is assessed. Equivocal IHC cases (IHC 2+) will also be validated.

Methods

Two TMA (98 cases: 2 cores/case) of FFPE cases of invasive breast carcinomas were used (cases were assessed for ER, PR and c-erbB2 IHC prior to this study). TMA tissues were deparaffinized and hydrated in the usual manner. In this study, IHC was assessed by Dako HercepTest® (test was performed by Clarient Inc.), a new rabbit monoclonal antibody [EP1045Y] (Biocare Medical), and two ISH methods: a c-erbB2 probe targeted against mRNA (Biocare Medical/HistoSonda), and a FDA approved HER2 CISH (Biocare Medical/Life Technologies). All cores were assessed for IHC 0, 1+, 2+ and 3+ staining and HER2 CISH was scored as amplified or non amplified according to the FDA approved interpretation scheme. RISH[™] was scored as negative or positive and/or low and high expression.

Results

The new rabbit monoclonal c-erbB2 was observed to be superior to HercepTest[®] (Table 1). In one case the rabbit monoclonal c-erbB2 was graded as 2+/3+ but as 1+/2+ with HercepTest[®]; both were confirmed as HER2 CISH amplified. In a 98 case study, there was a 94% (92/98) concordance between HER2 CISH and IHC (rabbit monoclonal), 92% (90/98) concordance between RISH[™] and both IHC methods. HER2 CISH and RISH[™] showed a 98% (96/98) concordance. Morphology was superior with both IHC methods and RISH[™] methods compared to morphology HER2 CISH (photo 3, 4, 5). In RISH[™] cases, high and low expression (photo 6, 7) was observed. In all cases of RISH[™] with low expression, HER2 CISH was amplified.

Table 1a

Test	Cases	0	1+	2+	3+
Rabbit Monoclonal c-erbB2	37	17	5	4	11
		0	0	1*	11
Delta Hereen Teet®	37	16	8	4	9
Dako Herceptest®		0	0	3*	9

*Confirmed by HER2 CISH as HER2 Amplified

Table 1b

Test	Cases	0	Amp+
SPOT-Light [®] HER2 CISH	37	25	12

Table 2

Correlation of c-erbB2/HER2 by IHC, Gene Amplification (HER2 CISH) and mRNA (RISH™) on TMA

Score	0	1+	2+	3+
HercepTest [®] (%)	41.0%	20.5%	10.3%	28.2%
c-erbB2/HER2 RbMab (%)	39.8%	15.3%	11.2%	33.7%
c-erbB2/HER2 RISH Probe + (%)	1.0%	1.0%	1.0%	38.8%
HER2 CISH + (%)	0.0%	2.0%	1.0%	36.7%

Conclusion

c-erbB2 protein was assessed by IHC using HercepTest®. HER2 gene amplification was quantified using SPOT-Light® HER2 CISH. HER2 mRNA transcription was determined using a chromogenic single stranded DNA probe (RISH[™]). Concordance between HER2 CISH and RISH[™] methods was 98%. The rabbit monoclonal antibody IHC method achieved a 94% correlation with HER2 CISH. Although only 37 cases were tested, the rabbit monoclonal c-erbB2 was shown to be superior to HerceptTest®. Other studies have shown a 95% correlation with HercepTest[®]. In conclusion, this study demonstrates the high concordance between RISH[™] and the common methods (IHC, FISH/HER2 CISH) for assessment of c-erbB2 or HER2/neu status in breast cancer. Based upon these results, it may be proposed that RISH[™] or HER2 CISH be used in the primary screening of HER2 status.

References

1. Todorovic-Rakovic N et al. Comparison between immunohistochemistry and chromogenic in situ hybridization in assessing HER-2 status in breast cancer. Pathol Int. 2005 Jun;55(6):318-23.

2. Madrid MA, Lo RW. Chromogenic in situ hybridization (CISH): a novel alternative in screening archival breast cancer tissue samples for HER-2/neu status. Breast Cancer Res. 2004;6(5):R593-600. Epub 2004 Jul 29.

3. Arnould L et al. Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer. 2003 May 19;88(10):1587-91.

4. Moelans CB et al. HER-2/neu amplification testing in breast cancer by multiplex ligation-dependent probe amplification in comparison with immunohistochemistry and in situ hybridization. Cell Oncol. 2009;31(1):1-10.

5. Di Palma S et al. Chromgoenic in situ hybridization (CISH) should be an accepted method in the routine diagnostic evaluation of HER2 status in breast cancer. J Clin Pathol. 2007 Sep;60(9):1067-8. Epub 2007 Feb 9.

6. Todorovic-Rakovic N et al. Comparison between immunohistochemistry and chromogenic in situ hybridization in assessing HER-2 status in breast cancer. Pathol Int. 2005 Jun;55(6):318-23.

7. Gong et. al. Chromogenic in situ hybridization (CISH) is a reliable method for detecting HER2 gene status in breast cancer: A multicenter study using conventional scoring criteria and the new ASCO/CAP recommendations. Am J Clin Pathol. 2009 Apr; 131(4):490-7.

www.biocare.net