Concentrated and Prediluted Mouse Monoclonal Antibody 901-3120-103125

Available Product Formats				
Format	Catalog Number	Description	Dilution	Diluent
NeoPATH PRO	NPAI 3120 T40	40 tests	Ready-to-use	N/A

Intended Use:

For in vitro Diagnostic Use

The Biocare SOX11 (M) [SOX11-C1] mouse monoclonal antibody is intended for laboratory professional use, after the initial diagnosis of tumor has been made, in the qualitative identification of the SOX11 protein in sections of formalin fixed, paraffin-embedded (FFPE) human tissue by immunohistochemistry (IHC) procedure performed manually or on an automated slide stainer and visualized by light microscopy. The clinical interpretation of any staining or its absence should be complemented by morphological studies using proper controls and should be evaluated within the context of the patient's clinical history and other diagnostic tests by a qualified pathologist.

Summary and Explanation:

The SOX11 (M) [SOX11-C1] antibody is a mouse monoclonal antibody developed for the detection of SOX11 (SRY-box transcription factor 11), a member of the SOX family of transcription factors involved in embryonic development and cellular differentiation.¹⁵

SOX11 is strongly expressed in most cases of mantle cell lymphoma (MCL), including those that are cyclin D1-negative, making it a valuable diagnostic marker in challenging MCL cases where the t(11;14) translocation or cyclin D1 overexpression is absent. The SOX11-C1 clone demonstrates strong nuclear staining and has shown improved sensitivity and specificity compared to earlier antibodies for SOX11 detection in MCL. 16,17

In addition to its diagnostic utility in MCL, SOX11 expression has also been associated with a favorable prognosis in glioblastoma. The immunohistochemical (IHC) detection of SOX11 using the SOX11 (M) [SOX11-C1] antibody may aid in the evaluation of hematopoietic and central nervous system tumors. 18-19

Principle of Procedure:

This antibody product may be used as the primary antibody in immunohistochemistry testing of formalin-fixed, paraffin-embedded tissue sections. In general, immunohistochemical (IHC) staining techniques allow for the visualization of antigens via the sequential application of a specific antibody to the antigen (primary antibody), a secondary antibody to the primary antibody (optional link antibody/probe), an enzyme complex and a chromogenic substrate with interposed washing steps. The enzymatic activation of the chromogen results in a visible reaction product at the antigen site. The specimen may then be counterstained, and cover slipped. Results are interpreted using a light microscope and aid in the differential diagnosis of pathophysiological processes, which may or may not be associated with a particular antigen.

Materials and Methods:

Reagents Provided:

Host Source: Mouse monoclonal

Species Reactivity: Human; other species not tested.

Clone: SOX11-C1 Isotype: IgG1/kappa Protein Concentration: Contact Biocare's Technical Support for specific Ig

concentration. Specificity: SOX11

Cellular Localization: Nuclear

Method: Affinity purified mouse monoclonal

Reconstitution, Mixing, Dilution, Titration:

Prediluted antibody reagent is optimally diluted for use with the below listed staining system. Further dilution may result in loss of antigen staining. The user must validate any such change. Differences in tissue processing and technical procedures in the user's laboratory may produce significant variability in results necessitating regular performance of in-house controls (see Quality Control section).

Known Applications:

Immunohistochemistry (formalin-fixed paraffin-embedded tissues)

Supplied As:

Buffered saline solution, pH 6.1-6.3, contains a protein carrier and less than 0.1% sodium azide preservative. See Safety Data Sheet for additional details.

Materials and Reagents Needed but Not Provided:

Microscope slides positively charged.

Positive and negative tissue controls Desert Chamber (or similar Drying oven)

Xylene or xylene substitute

Ethanol or reagent alcohol

Decloaking Chamber (Pressure cooker)

Deionized or distilled water

Wash buffer

Pretreatment reagents

Peroxidase block

Protein block (optional)

Detection probe and polymer

Negative control reagents

Chromogens

Hematoxylin (counterstain)

Bluing reagent

Mounting medium

Light Microscope (40-400X magnification)

Automated Slide Staining Platform

Configurations of the antibody product are available for use on the instruments indicated in the table above.

Storage and Stability:

Store at 2°C to 8°C. The product is stable to the expiration date printed on the vial label, when stored under these conditions. Do not use after expiration date. Storage under any condition other than those specified must be verified. Diluted reagents should be used promptly; store any remaining reagent at 2°C to 8ºC. The stability of user diluted reagents have not been established by Biocare.

Positive and negative controls should be run simultaneously with all patient specimens. If unexpected staining is observed, which cannot be explained by variations in laboratory procedures and a problem with the antibody is

Biocare Medical 60 Berry Drive

Pacheco, CA 94553

USA

TP v9 (04/07/2025)

Tel: 800-799-9499 www.biocare.net | Fax: 925-603-8080

Concentrated and Prediluted Mouse Monoclonal Antibody 901-3120-103125

suspected, contact Biocare's Technical Support at 1-800-542-2002 or via the technical support information provided on biocare.net.

Specimen Preparation:

Tissues fixed in formalin are suitable for use prior to paraffin embedding. Osseous tissues should be decalcified prior to tissue processing to facilitate tissue cutting and prevent damage to microtome blades.^{1,2}

Properly fixed and embedded tissues expressing the specified antigen target should be stored in a cool place. The Clinical Laboratory Improvement Act (CLIA) of 1988 requires in 42 CFR §493.1259(b) that "The laboratory must retain stained slides at least ten years from the date of examination and retain specimen blocks at least two years from the date of examination."³

Treatment of Tissues Prior to Staining:

Perform Heat Induced Epitope Retrieval (HIER) per recommended protocol below. The routine use of HIER prior to IHC has been shown to minimize inconsistency and standardize staining. 4,5

Warning and Precautions:

- 1. This antibody contains less than 0.1% sodium azide. Concentrations less than 0.1% are not reportable hazardous materials according to U.S. 29 CFR 1910.1200, OSHA Hazard communication and EC Directive 91/155/EC. Sodium azide (NaN $_3$) used as a preservative is toxic if ingested. Sodium azide may react with lead and copper plumbing to form highly explosive metal azides. Upon disposal, flush with large volumes of water to prevent azide build-up in plumbing. (Center for Disease Control, 1976, National Institute of Occupational Safety and Health, 1976) 6
- 2. Specimens, before and after fixation, and all materials exposed to them should be handled as if capable of transmitting infection and disposed of with proper precautions. Never pipette reagents by mouth and avoid contacting the skin and mucous membranes with reagents and specimens. If reagents or specimens come into contact with sensitive areas, wash with copious amounts of water.⁷
- 3. Microbial contamination of reagents may result in an increase in nonspecific staining.
- 4. Incubation times or temperatures other than those specified may give erroneous results. The user must validate any such change.
- 5. Do not use reagent after the expiration date printed on the vial.
- 6. Prediluted antibody reagent is optimally diluted for use. Further dilution may result in loss of antigen staining.
- 7. To prevent evaporation and ensure maximum test capacity, promptly cap and remove reagents from automated instruments after each run. Leaving reagents exposed can reduce their effectiveness and the number of tests they can provide. Always store reagents as directed to maintain their integrity.
- 8. Dispose of all used reagents and any other contaminated disposable materials following procedures for infectious or potentially infectious waste. It is the responsibility of each laboratory to handle solid and liquid waste according to their nature and degree of hazardousness and to treat and dispose of it (or have them treated and disposed of) in accordance with any applicable regulations.
- 9. Follow local disposal regulations for your location along with recommendations in the Safety Data Sheet to determine the safe disposal of this product
- 10. The SDS is available upon request and is located at http://biocare.net.
- 11. To report suspected serious incidents related to this device, contact the local Biocare representative and the competent authority of the Member State or Country in which the user is established.

Instructions for Use:

Recommended Staining Protocols for SOX11 (M) [SOX11-C1]:

NeoPATH PRO:

NPAI3120 is intended for use with the NeoPATH PRO. Refer to the User Manual for specific instructions for use. Recommended protocol			
parameters are as follows:			
Chromogen Staining Option DAB			
Antibody Protocol:	SOX11, 30 min at RT		
Template:	HRP_TECT_HIGH_110C_30MINAB+BLOCK		
Dewax:	Dewax STD; 20 min at 75°C		
Antigen Retrieval (HIER Option):	HIGH_110C_30MIN		
Enzyme:	N/A		
Block Option:	NeoPATH Pro Background Punisher, 10 min at RT		
Detection:	HRP_TECT_30AB+BLOCK (Probe; 10 min at RT, Linker; 10 min at RT, Polymer; 15 min at RT)		
Chromogen:	7 min NPP DAB + 2 min DAB Enhancer at RT		
Hematoxylin:	7 min at RT		

Quality Control:

Refer to CLSI Quality Standards for Design and Implementation of Immunohistochemistry Assays; Approved Guideline-Second edition (I/LA28-A2) CLSI Wayne, PA USA (www.clsi.org). 2011⁸

Positive Tissue Control: Mantle cell lymphoma

External Positive control materials should be fresh specimens fixed, processed, and embedded as soon as possible in the same manner as the patient sample(s). Positive tissue controls are indicative of correctly prepared tissues and proper staining techniques. One positive external tissue control for each set of test conditions should be included in each staining run.

The tissues used for the external positive control materials should be selected from patient specimens with well-characterized low levels of the positive target activity that gives weak positive staining. The low level of positivity for external positive controls is designed to ensure detection of subtle changes in the primary antibody sensitivity from instability or problems with the IHC methodology. Commercially available tissue control slides or specimens processed differently from the patient sample(s) validate reagent performance only and do not verify tissue preparation.

Known positive tissue controls should only be utilized for monitoring the correct performance of processed tissues and test reagents, rather than as an aid in formulating a specific diagnosis of patient samples. If the positive tissue controls fail to demonstrate positive staining, results with the test specimens should be considered invalid.

Negative Tissue Control:

Use a negative tissue control (known to be SOX11 negative) fixed, processed, and embedded in a manner identical to the patient sample(s) with each staining run to verify the specificity of the IHC primary antibody for demonstration of the target antigen, and to provide an indication of specific background staining (false positive staining). Also, the variety of different cell types present in most tissue sections can be used by the laboratorian as internal negative control sites to verify the IHC's performance specifications. The types and sources of specimens that may be used for negative tissue controls are listed in the Performance Characteristics section.

If specific staining (false positive staining) occurs in the negative tissue control, results with the patient specimens should be considered invalid.

TP v9 (04/07/2025)

Concentrated and Prediluted Mouse Monoclonal Antibody 901-3120-103125

Nonspecific Negative Reagent Control:

Use a nonspecific negative reagent control in place of the primary antibody with a section of each patient specimen to evaluate nonspecific staining and allow better interpretation of specific staining at the antigen site. Ideally, a negative reagent control contains a SOX11 / IqG1/kappa, mouse monoclonal antibody produced from tissue culture supernatant in the same way as the primary antibody but exhibits no specific reactivity with human tissues in the same matrix/solution as the Biocare antibody. Dilute a negative control antibody to the same immunoglobulin or protein concentration as the diluted primary antibody using the identical diluent. If fetal calf serum is retained in the neat antibody after processing, fetal calf serum at a protein concentration equivalent to the diluted primary antibody in the same diluent is also suitable for use. (Refer to reagent provided). Diluent alone may be used as a less desirable alternative to the previously described negative reagent controls. The incubation period for the negative reagent control should correspond to that of the primary antibody.

When panels of several antibodies are used on serial sections, the negatively staining areas of one slide may serve as a negative/nonspecific binding background control for other antibodies. To differentiate endogenous enzyme activity or nonspecific binding of enzymes from specific immunoreactivity, additional patient tissues may be stained exclusively with substratechromogen or enzyme complexes (PAP, avidin-biotin, streptavidin) and substrate-chromogen, respectively.

Assay Verification:

Prior to initial use of an antibody or staining system in a diagnostic procedure, the user should verify the antibody's specificity by testing it on a series of inhouse tissues with known immunohistochemical performance characteristics representing known positive and negative tissues. Refer to the quality control procedures previously outlined in this section of the product insert and to the quality control recommendations of the CAP Certification Program⁹ for Immunohistochemistry and/or the NCCLS IHC guideline¹⁰). These quality control procedures should be repeated for each new antibody lot, or whenever there is a change in assay parameters. Tissues listed in the Performance Characteristics Section are suitable for assay verification.

Troubleshooting:

Follow the antibody specific protocol recommendations according to the data sheet provided. If atypical results occur, contact Biocare's Technical Support at 1-800-542-2002.

Interpretation of Staining:

Positive Tissue Control:

The positive tissue control stained with indicated antibody should be examined first to ascertain that all reagents are functioning properly. The appropriate staining of target cells (as indicated above) is indicative of positive reactivity. If the positive tissue controls fail to demonstrate positive staining, any results with the test specimens should be considered invalid.

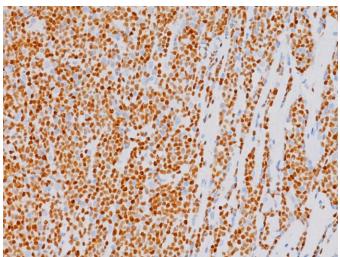
The color of the reaction product may vary depending on substrate chromogens used. Refer to substrate package inserts for expected color reactions. Further, metachromasia may be observed in variations of the method of staining.11

When a counterstain is used, depending on the incubation length and potency of the counterstain used, counterstaining will result in a coloration of the cell nuclei. Excessive or incomplete counterstaining may compromise proper interpretation of results. Refer to protocol(s) for recommended counterstain.

Negative Tissue Control:

Biocare Medical 60 Berry Drive Pacheco, CA 94553

USA


IVD

The negative tissue control should be examined after the positive tissue control to verify the specificity of the labeling of the target antigen by the primary antibody. The absence of specific staining in the negative tissue control confirms the lack of antibody cross reactivity to cells/cellular components. If specific staining (false positive staining) occurs in the negative external tissue control, results with the patient specimen should be considered invalid.

Nonspecific staining, if present, usually has a diffuse appearance. Sporadic staining of connective tissue may also be observed in sections from excessively formalin-fixed tissues. Use intact cells for interpretation of staining results. Necrotic or degenerated cells often stain nonspecifically.

Patient Tissue:

Examine patient specimens stained with indicated antibody last. Positive staining intensity should be assessed within the context of any nonspecific background staining of the negative reagent control. As with any immunohistochemical test, a negative result means that the antigen was not detected, not that the antigen was absent in the cells/tissue assayed. If necessary, use a panel of antibodies to identify false-negative reactions.

Mantle cell lymphoma stained with SOX11 (M) antibody.

Refer to Summary and Explanation, Limitations, and Performance Characteristics for specific information regarding indicated antibody immunoreactivity.

Limitations:

General Limitations:

- 1. For in vitro diagnostic Use
- 2. This product is for professional use only: Immunohistochemistry is a multistep diagnostic process that consists of specialized training in the selection of the appropriate reagents; tissue selection, fixation, and processing; preparation of the IHC slide; and interpretation of the staining
- 3. Tissue staining is dependent on the handling and processing of the tissue prior to staining. Improper fixation, freezing, thawing, washing, drying, heating, sectioning or contamination with other tissues or fluids may produce artifacts, antibody trapping, or false negative results. Inconsistent results may be due to variations in fixation and embedding methods, or to inherent irregularities within the tissue.12

Concentrated and Prediluted Mouse Monoclonal Antibody 901-3120-103125

- 4. Excessive or incomplete counterstaining may compromise proper interpretation of results.
- The clinical interpretation of any positive or negative staining should be evaluated within the context of clinical presentation, morphology, and other histopathological criteria. The clinical interpretation of any positive or negative staining should be complemented by morphological studies using proper positive and negative internal and external controls as well as other diagnostic tests. It is the responsibility of a qualified pathologist who is familiar with the proper use of IHC antibodies, reagents, and methods to interpret all the steps used to prepare and interpret the final IHC preparation.
- The optimum antibody dilution and protocols for a specific application can vary. These include, but are not limited to fixation, heat-retrieval method, incubation times, tissue section thickness and detection kit used. Due to the superior sensitivity of these unique reagents, the recommended incubation times and titers listed are not applicable to other detection systems, as results may vary. The data sheet recommendations and protocols are based on exclusive use of Biocare products. Ultimately, it is the responsibility of the investigator to determine optimal conditions.
- 7. This product is not intended for use in flow cytometry. Performance characteristics have not been determined for flow cytometry.
- Tissues from persons infected with hepatitis B virus and containing hepatitis B surface antigen (HBsAg) may exhibit nonspecific staining with horseradish peroxidase.13
- Reagents may demonstrate unexpected reactions in previously untested tissues. The possibility of unexpected reactions even in tested tissue groups cannot be completely eliminated due to biological variability of antigen expression in neoplasms, or other pathological tissues. 14 Contact Biocare's Technical Support at 1-800-542-2002, or via the technical support information provided on biocare.net, with documented unexpected reaction(s).
- 10. Normal/nonimmune sera from the same animal source as secondary antisera used in blocking steps may cause false-negative or false-positive results due to autoantibodies or natural antibodies.
- 11. False-positive results may be seen due to non-immunological binding of proteins or substrate reaction products. They may also be caused by pseudo peroxidase activity (erythrocytes), endogenous peroxidase activity (cytochrome C), or endogenous biotin (e.g., liver, breast, brain, kidney) depending on the type of immunostain used.12

Product Specific Limitations:

No additional product specific limitations noted.

Performance Characteristics:

Analytical Performance:

Staining tests for sensitivity and specificity were conducted and the results are listed below.

Sensitivity, specificity, and cross-reactivity are summarized in Tables 1-3, respectively.

Immunoreactivity:

The following positive and negative immunoreactivities have been demonstrated in Tables 1-3 below.

The list provided below is not exhaustive but characterizes the types of immunoreactivities observed with the indicated antibody.

Sensitivity and Specificity:

Table 1: Sensitivity and specificity were determined by testing formalin-fixed, paraffin-embedded diseased tissues.

60 Berry Drive Pacheco, CA 94553

USA

Biocare Medical

TP v9 (04/07/2025)

Tissue	Positive Cases	Total Cases
Skin cancer	0	2
Lung cancer	0	5
Testicular cancer	1	3
Prostate cancer	1	2
Gallbladder cancer	0	2
Gastrointestinal cancer	4	10
Pancreatic cancer	1	2
Colorectal cancer	1	5
Head and Neck cancer	0	4
Liver cancer	1	2
Breast cancer	2	4
Uterine cancer	0	4
Cervical cancer	0	1
Ovarian cancer	0	2
Mediastinum cancer	0	1
Thyroid cancer	0	2
Brain cancer	3	5
Bladder cancer	1	2
Kidney cancer	0	3
Lymphoma	0	4
Spleen cancer	0	1
Sarcoma	1	3
Pelvic cancer	0	2
Bone cancer	0	1
Skin cancer	0	2
Lung cancer	0	5

Table 2: Tissue cross-reactivity was determined by testing formalin-fixed,

Testicular cancer

paraffin-embedded normal tissues		
Tissue	Positive Cases	Total Cases
Cerebrum	0	6
Cerebellum	0	3
Adrenal gland	0	3
Ovary	0	3
Pancreas	0	3
Lymph node	0	19
Pituitary gland	0	3
Testis	0	3
Thyroid gland	0	3
Breast	0	2
Spleen	0	3
Tonsil	0	3
Thymus gland	0	3
Bone marrow	0	3
Lung	0	3
Heart	0	3

Concentrated and Prediluted Mouse Monoclonal Antibody 901-3120-103125

Esophagus	0	3
Stomach	0	3
Small intestine	0	3
Colon	0	3
Liver	0	3
Salivary gland	0	3
Kidney	0	3
Prostate	0	3
Uterus	0	3
Cervix	0	3
Skeletal muscle	0	3
Skin	0	1
Nerve	0	2
Mesothelial	0	1
Eye	0	0
Larynx	0	2

Table 3: Sensitivity and specificity were determined by testing formalin-fixed, paraffin-embedded Lymphoma TMA tissues.

Tissue	Positive Cases	Total Cases
B-cell lymphoma	7	131
Burkitt-like lymphoma	0	2
follicular lymphoma	0	5
mantle cell lymphoma	1	1
plasma cell lymphoma	0	4
anaplastic large cell lymphoma	0	12
T-cell lymphoma	0	15
angioimmunoblastic T-cell lymphoma	0	4
Hodgkin's lymphoma	0	12

The results of the analytical performance testing demonstrated that the SOX11 (M) [SOX11-C1] antibody can correctly detect the SOX11 protein when using the defined IHC protocol. The SOX11 (M) [SOX11-C1] antibody is able to detect low to high levels of the SOX11 protein (low to high cell counts). This finding is consistent with the conclusion that the SOX11 (M) [SOX11-C1] antibody is sensitive in its ability to detect the SOX11 protein. There was no unexpected staining of any normal or abnormal tissue.

Troubleshooting:

- No staining of any slides Check to determine appropriate positive control tissue, antibody, and detection products have been used.
- Weak staining of all slides Check to determine appropriate positive control tissue, antibody, and detection products have been used.
- Excessive background of all slides There may be high levels of endogenous biotin (if using biotin-based detection products), endogenous HRP activity converting chromogen to colored end product (use peroxidase block), or excess non-specific protein interaction (use a protein block, such as serum- or casein-based blocking solution).
- Tissue sections wash off slides during incubation Check slides to ensure they are positively charged.
- Specific staining too dark Check protocol to determine if proper antibody titer was applied to slide, as well as proper incubation times for all reagents. Additionally, ensure the protocol has enough washing steps to remove excess reagents after incubation steps are completed.

References:

- Kiernan JA. Histological and Histochemical Methods: Theory and Practice. New York: Pergamon Press 1981.
- Sheehan DC and Hrapchak BB. Theory and Practice of Histotechnology. St. Louis: C.V. Mosby Co. 1980.
- Clinical Laboratory Improvement Amendments of 1988: Final Rule, 57 FR 7163, February 28, 1992.
- 4. Shi S-R, Cote RJ, Taylor CR. J Histotechnol. 1999 Sep;22(3):177-92.
- 5. Taylor CR, et al. Biotech Histochem. 1996 Jan;71(5):263-70.
- Center for Disease Control Manual. Guide: Safety Management, NO. CDC-22, Atlanta, GA. April 30, 1976 "Decontamination of Laboratory Sink Drains to Remove Azide Salts."
- Clinical and Laboratory Standards Institute (CLSI). Protection of Laboratory Workers from Occupationally Acquired Infections; Approved Guideline-Fourth Edition CLSI document M29-A4 Wayne, PA 2014.
- CLSI Quality Standards for Design and Implementation of Immunohistochemistry Assays; Approved Guideline-Second edition (I/LA28-A2) CLSI Wayne, PA USA (www.clsi.org). 2011
- College of American Pathologists (CAP) Certification Program for Immunohistochemistry. Northfield IL. Http://www.cap.org (800) 323-4040.
- O'Leary TJ, Edmonds P, Floyd AD, Mesa-Tejada R, Robinowitz M, Takes PA, Taylor CR. Quality assurance for immunocytochemistry; Proposed guideline. MM4-P. National Committee for Clinical Laboratory Standards (NCCLS). Wayne, PA. 1997;1-46.
- Koretzik K, Lemain ET, Brandt I, and Moller P. Metachromasia of 3-amino-9-ethylcarbazole (AEC) and its prevention in Immunoperoxidase techniques. Histochemistry 1987; 86:471-478.
- Nadji M, Morales AR. Immunoperoxidase, part I: the techniques and its pitfalls. Lab Med 1983; 14:767.
- Omata M, Liew CT, Ashcavai M, Peters RL. Nonimmunologic binding of horseradish peroxidase to hepatitis B surface antigen: a possible source of error in immunohistochemistry. AmJ Clin Path 1980; 73:626.
- 14. Herman GE and Elfont EA. The taming of immunohistochemistry: the new era of quality control. Biotech & Histochem 1991; 66:194.
- Pusch C, et al. The SOX10/Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum Genet. 1998 Aug; 103(2):115-23.
- Soldini D, et al. Assessment of SOX11 expression in routine lymphoma tissue sections: characterization of new monoclonal antibodies for diagnosis of mantle cell lymphoma. Am J Surg Pathol. 2014 Jan; 38(1):86-93.
- 17. Chen YH, et al. Nuclear expression of sox11 is highly associated with mantle cell lymphoma but is independent of t(11;14)(q13;q32) in nonmantle cell B-cell neoplasms. Mod Pathol. 2010 Jan; 23(1):105-12.
- 18. Nordström L, et al. Expanded clinical and experimental use of SOX11 using a monoclonal antibody. BMC Cancer. 2012 Jun 27; 12:269.
- 19. Korkolopoulou P, et al. Sox11 expression in astrocytic gliomas: correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Br J Cancer. 2013 May 28; 108(10):2142-52.