

Available Product Formats				
Format	Catalog Number	Description	Dilution	Diluent
Concentrate	ACR 163 A, B, C	0.1, 0.5, 1.0 mL	1:100	Van Gogh Yellow
Predilute	APR 163 AA, H	6.0, 25 mL	Ready-to-use	N/A
UltraLine – For BenchMark	AVR 163 G, G25	6.0, 25 mL	Ready-to-use	N/A
Q Series – For Leica BOND-III	ALR 163 G7	7.0 mL	Ready-to-use	N/A

Intended Use:

For Research Use Only. Not for use in diagnostic procedures.

Summary and Explanation:

p63, a homolog of the tumor suppressor p53, has been identified in basal cells in the epithelial layers of a variety of tissues, including epidermis, cervix, urothelium, breast and prostate (1). p63 was detected in nuclei of the basal epithelium in normal prostate glands; however, it was not expressed in malignant tumors of the prostate (2). As a result, p63 has been reported as a useful marker for differentiating benign from malignant lesions in the prostate, particularly when used in combination with markers of high molecular weight cytokeratins and the prostatespecific marker AMACR (P504S) (3-4).

p63 has also been shown to be a sensitive marker for lung squamous cell carcinomas (SqCC), with reported sensitivities of 80-100% (5-8). Specificity for lung SqCC, vs. lung adenocarcinoma (LADC), has been reported to be approximately 70-90%, as positive staining with p63 has been typically observed in 10-30% of LADC cases (5-8).

In breast tissue, p63 has been identified in myoepithelial cells of normal ducts (9). Reports have described the utility of p63 in a panel of IHC markers for the assessment of breast lesions, due to the differential expression of the luminal vs. basal and myoepithelial markers (9-11).

Principle of Procedure:

Antigen detection in tissues and cells is a multi-step immunohistochemical process. The initial step binds the primary antibody to its specific epitope. After labeling the antigen with a primary antibody, a one-, two- or three-step detection procedure can be employed. The one-step procedure will feature an enzyme-labeled polymer that binds to the primary antibody. A two-step procedure will feature a secondary antibody added to bind to the primary antibody. An enzyme-labeled polymer is then added to bind to the secondary antibody. The three-step detection procedure will feature a secondary antibody added to bind to the primary antibody followed by a linker antibody step for maximum binding. An enzyme-labeled polymer is then added to bind to the linker antibody. These detections of the bound antibodies are evidenced by a colorimetric reaction.

Source: Mouse monoclonal

Species Reactivity: Human, mouse and rat

Clone: 4A4

Isotype: IgG2a/kappa

Protein Concentration: Call for lot specific Ig concentration.

Epitope/Antigen: p63

Cellular Localization: Nuclear

Positive Tissue Control: Normal prostate

Known Applications:

Immunohistochemistry (formalin-fixed paraffin-embedded tissues)

Supplied As: Buffer with protein carrier and preservative

Storage and Stability:

Store at 2°C to 8°C. The product is stable to the expiration date printed on the label, when stored under these conditions. Do not use after

expiration date. Diluted reagents should be used promptly; any remaining reagent should be stored at 2°C to 8°C.

Staining Protocol Recommendations (intelliPATH FLX® and manual use):

Peroxide Block: Block for 5 minutes with Peroxidazed 1.

Pretreatment: Perform heat retrieval using Reveal Decloaker. Refer to the Reveal Decloaker product data sheet for specific instructions. Protein Block (Optional): Incubate for 5-10 minutes at RT with

Background Punisher.

Primary Antibody: Incubate for 30 minutes at RT.

Probe: Incubate for 10 minutes at RT with a secondary probe. **Polymer:** Incubate for 10-20 minutes at RT with a tertiary polymer. Chromogen: Incubate for 5 minutes at RT with Biocare's DAB - OR -Incubate for 5-7 minutes at RT with Warp Red.

Counterstain:

Counterstain with hematoxylin. Rinse with deionized water. Apply Tacha's Bluing Solution for 1 minute. Rinse with deionized water.

Technical Note:

This antibody, for intelliPATH FLX and manual use, has been standardized with MACH 4 detection system. Use TBS for washing steps.

Staining Protocol Recommendations (Q Series - For Leica **BOND-III):**

ALR163 is intended for use with the Leica BOND-III. Refer to the User Manual for specific instructions for use. Recommended protocol parameters are as follows:

Protocol Name: IHC Protocol F **Detection:** Bond Polymer Refine

HIER: 20 min with ER1 Peroxide Block: 5 min

Marker (Primary Antibody): 15 min

Post Primary: 8 min Polymer: 8 min

Mixed DAB Refine: 10 min Hematoxylin: 5 min

Limitations:

This product is provided for Research Use Only (RUO) and is not for use in diagnostic procedures. Suitability for specific applications may vary and it is the responsibility of the end user to determine the appropriate application for its use.

Precautions:

1. This antibody contains less than 0.1% sodium azide. Concentrations less than 0.1% are not reportable hazardous materials according to U.S. 29 CFR 1910.1200, OSHA Hazard communication and EC Directive 91/155/EC. Sodium azide (NaN3) used as a preservative is toxic if ingested. Sodium azide may react with lead and copper plumbing to form highly explosive metal azides. Upon disposal, flush with large

Biocare Medical

60 Berry Drive

Pacheco, CA 94553

USA

Rev. 062117

p63

Concentrated and Prediluted Monoclonal Antibody 902-163-043021

volumes of water to prevent azide build-up in plumbing. (Center for Disease Control, 1976, National Institute of Occupational Safety and Health, 1976) (12)

- 2. Specimens, before and after fixation, and all materials exposed to them should be handled as if capable of transmitting infection and disposed of with proper precautions. Never pipette reagents by mouth and avoid contacting the skin and mucous membranes with reagents and specimens. If reagents or specimens come in contact with sensitive areas, wash with copious amounts of water. (13)
- 3. Microbial contamination of reagents may result in an increase in nonspecific staining.
- 4. Incubation times or temperatures other than those specified may give erroneous results. The user must validate any such change.
- 5. Do not use reagent after the expiration date printed on the vial.
- 6. The SDS is available upon request and is located at http://biocare.net.

Technical Support:

Contact Biocare's Technical Support at 1-800-542-2002 for questions regarding this product.

References:

- 1. Yang A, *et al.* p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998 Sep; 2(3):305-16.
- 2. Signoretti S, *et al.* p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol. 2000 Dec; 157(6):1769-75.
- 3. Paner GP, Luthringer DJ, Amin MB. Best practice in diagnostic immunohistochemistry: prostate carcinoma and its mimics in needle core biopsies. Arch Pathol Lab Med. 2008 Sep; 132(9):1388-96.
- 4. Humphrey PA. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol. 2007 Jan; 60(1):35-42.
- 5. Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011 Jan; 35(1):15-25.
- 6. Tacha D, *et al.* A six antibody panel for the classification of lung adenocarcinoma versus squamous cell carcinoma. Appl Immunohistochem Mol Morphol. 2012 May; 20 (3):201-7.
- 7. Terry J, *et al.* Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol. 2010 Dec; 34(12):1805-11.
- 8. Pu RT, Pang Y, Michael CW. Utility of WT-1, p63, MOC31, mesothelin, and cytokeratin (K903 and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma, and malignant mesothelioma in effusions. Diagn Cytopathol. 2008 Jan; 36(1):20-5.
- 9. Lerwill MF. Current practical applications of diagnostic mmunohistochemistry in breast pathology. Am J Surg Pathol. 2004 Aug; 28(8):1076-91.
- 10. Hicks DG. Immunohistochemistry in the diagnostic evaluation of breast lesions. Appl Immunohistochem Mol Morph. 2011 Dec; 19(6):501-5.
- 11. Yeh IT, Mies C. Application of immunohistochemistry to breast lesions. Arch Pathol Lab Med. 2008 Mar; 132(3):349-58.
- 12. Center for Disease Control Manual. Guide: Safety Management, NO. CDC-22, Atlanta, GA. April 30, 1976 "Decontamination of Laboratory Sink Drains to Remove Azide Salts."
- 13. Clinical and Laboratory Standards Institute (CLSI). Protection of Laboratory Workers from Occupationally Acquired Infections; Approved Guideline-Fourth Edition CLSI document M29-A4 Wayne, PA 2014.

Ultraline antibodies are developed solely by Biocare Medical LLC and do not imply approval or endorsement of Biocare antibodies by Ventana Medical Systems, Inc or Roche. Biocare, Ventana and Roche are not affiliated, associated or related in any way. Ventana[®], BenchMark[®], ultraView and OptiView are trademarks of Roche.

QLine antibodies are developed solely by Biocare Medical LLC and do not imply approval or endorsement of Biocare antibodies by Leica Biosystems. Biocare and Leica Biosystems are not affiliated, associated or related in any way. Leica, Leica Biosystems, BOND-MAX and BOND-III are trademarks of Leica Biosystems.