

TRIDENT FISH[™] Organ / Disease

Dive into *in situ* hybridization (ISH) with Biocare's new TRIDENT FISH[™] probes. Updated sequence-specific probes with superior labeling technology are available for cancer and disease states – yielding clear results with less ambiguity. Patent-pending del-TECT[™] probe design virtually eliminates error due to the truncation artifact in FFPE tissues giving you more confidence in less time.

www.biocare.net

Prostate

With disease panels like PTEN, TMPRSS2/ERG and Androgen Receptor (AR), more informative disease stratification is possible.¹ MYC amplification and NKX31 allelic loss are significant predictors of prostate cancer progression and aggressiveness.^{2,3} The novel tumor suppressor PHLPP1 is deleted as frequently as PTEN in prostate cancer, and may represent a therapeutic target for suppressing oncogenic pathways.⁴

Probe Name	Target	Colors	Catalog Number
PTEN del-TECT™ Four Color	PTEN		PFR 7032 A
ERG (21q22) Break Apart (Red/Green)	ERG (BA)		PFR 7011 A
TMPRSS2/ERG del-TECT™ Four Color	ERG (BA)		PFR 7049 A
AR (Xq12) Red + Copy Control Xp11.21 Green	AR		PFR 7004 A
NKX/MYC del-TECT™ Four Color	NKX3.1		PFR 7030 A
MYC (8q24) Orange	MYC		PFA 7293 V
MYC (8q24) Orange + Copy Control 8 Green	MYC		PFR 7027 A
MYC (8q24) Break Apart (Orange/Green)	MYC		PFR 7026 A
PHLPP1 (18q21) Red + Copy Control 18 Green	PHLPP1		PFR 7035 A

Lung

Recently, the ALK-EML4 fusion gene has been shown to be an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC⁵, and Biocare's unique ALK-EML4 Tri-Color allows detection of ALK break-apart and EML4 fusion in the same test. Patients with either ROS1 rearrangement or MET amplification have also been shown to respond to crizotinib treatment.^{6,7} Other small molecule kinase inhibitors have shown activity against RET break apart mutants.⁸

Probe Name	Target	Colors	Catalog Number
ALK/EML4 Tri-Color	ALK/EML4		PFR 7000 A
ALK/EML del-TECT™ Four Color	ALK/EML4		PFR 7001 A
ALK (2p23.2) Break Apart (Orange/Green)	ALK (BA)		PFR 7002 A
ALK (2p23.2) Break Apart (Red/Green)	ALK (BA)		PFR 7003 A
ROS1 (6q22) Break Apart (Orange/Green)	ROS1		PFR 7038 A
RET (10q11.21) Break Apart (Orange/Green)	RET		PFR 7039 A
MET (7q31) Orange + Copy Control 7 Green	MET		PFR 7028 A

Melanoma

Cytogenetic abnormalities in RREB1, MYB, and CCND1 loci detected by FISH are sensitive and specific markers of malignancy valuable for differentiating between benign and malignant melanocytic lesions.⁹ CDKN2A is frequently deleted in melanoma of all primary subtypes¹⁰, and loss of both CDKN2A and CCND1 correlate with poor responses to inhibitor therapy.¹¹

Probe Name	Target	Colors	Catalog Number
RREB1 (6p25) Orange	RREB1		PFA 7299 V
RREB1 (6p25) Orange + Copy Control 6q11.1 Green	RREB1		PFR 7037 A
Copy Control 6q11.1 Green	Copy Control 6		PFA 7178 V
Copy Control 6q11.1 Aqua	Copy Control 6		PFA 7179 V
MYB (6q23) Red/ 6q21 Green	MYB		PFR 7025 A
CCND1 (11q13) Orange	CCND1		PFA 7260 V
CCND1 (11q13) Orange + Copy Control 11 Green	CCND1		PFR 7006 A
CDKN2A (p16) Orange	CDKN2A		PFA 7264 V
CDKN2A (9p21.3) Orange + Copy Control 9 Green	CDKN2A		PFR 7008 A
CDKN2A del-TECT™ Four Color	CDKN2A		PFR 7007 A

Cervical

Amplification of TERC appears to be an important associated genetic event in the progression of cervical dysplasia to invasive cancer.¹² 5p15.2 is another locus which displays significant amplification in association with progression to aggressive disease.¹³ Increases in genes at and near 20q13 have been specifically associated with cervical cancer progression to higher grade lesions.¹⁴

Probe Name	Target	Colors	Catalog Number
TERC (3q26.2) Red	TERC (3q26)		PFA 7305 V
5p15.2 Green	5p15.2		PFA 7250 V
5p15.2 Red	5p15.2		PFA 7251 V
20q13.2 Orange	20q13 (ZNF217)		PFA 7255 V
TERC (3q26.2) Red/ 5p15.2 Green/ 20q13.2 Orange/ CC 10 Aqua	3q26/5p15.2/20q13/CC10		PFR 7043 A

Gastric/Esophageal

The set of FISH probes consisting of MYC, CDKN2A (9p21), ERBB2 (HER-2), and 20q13.2 can provide high sensitivity and specificity for the detection of Barrett's associated neoplasia and allow for the differentiation between esophageal adenocarcinoma and high-grade dysplasia (EAC/ HGD) or low-grade dysplasia and non-dysplasia (LGD/ND).¹⁵

Probe Name	Target	Colors	Catalog Number
CDKN2A (p16) Orange	CDKN2A		PFA 7264 V
CDKN2A (9p21.3) Orange + Copy Control 9 Green	CDKN2A		PFR 7008 A
CDKN2A del-TECT™ Four Color	CDKN2A		PFR 7007 A
MYC (8q24) Orange	MYC		PFA 7293 V
MYC (8q24) Orange + Copy Control 8 Green	MYC		PFR 7027 A
MYC (8q24) Break Apart (Orange/Green)	MYC		PFR 7026 A
ERBB2 (17q12) Orange	ERBB2 (HER-2)		PFA 7273 V
ERBB2 (17q12) Red	ERBB2 (HER-2)		PFA 7274 V
ERBB2 (17q12) Orange + Copy Control 17 Green	ERBB2 (HER-2)		PFR 7014 A
ERBB2 (17q12) Red + Copy Control 17 Green	ERBB2 (HER-2)		PFR 7015 A
20q13.2 Orange	20q13 (ZNF217)		PFA 7255 V

Bladder

Amplification at the 5p15.2 locus is strongly linked to high-grade, advanced-stage bladder tumors and rapid tumor cell proliferation in urinary cancer.¹⁶ Cytogenetic analysis demonstrated that 5p might be involved in translocations and/or formation of isochromosomes in a substantial number of bladder tumors.¹⁷ Gains at Chromosomes 3, 7, and 10 are seen more frequently in invasive urothelial tumors.¹⁸

Probe Name	Target	Colors	Catalog Number
5p15.2 Red	5p15.2		CFA 7251 A
Copy Control 10 Green	Copy Control 10		CFA 7200 A
Copy Control 3 Aqua	Copy Control 3		CFA 7164 A
Copy Control 7 Orange	Copy Control 7		CFA 7187 A

Breast

Amplification of HER-2 has been demonstrated to predict poor clinical outcome in breast cancer patients, and is shown to be associated with resistance to certain chemotherapeutic agents.^{19,20} Determining amplification of HER-2 is crucial in the guidance of treatment decisions for the use of HER-2-targeted therapies, and is becoming a standard recommendation in the pretreatment work-up of patients with invasive breast cancer.²¹ Loss of PTEN may have prognostic significance in breast cancer, and was shown to be associated with poor clinical outcome in HER-2-positive disease.^{22,23}

Probe Name	Target	Colors	Catalog Number
ERBB2 (17q12) Orange	ERBB2 (HER-2)		PFA 7273 V
ERBB2 (17q12) Red	ERBB2 (HER-2)		PFA 7274 V
ERBB2 (17q12) Orange + Copy Control 17 Green	ERBB2 (HER-2)		PFR 7014 A
ERBB2 (17q12) Red + Copy Control 17 Green	ERBB2 (HER-2)		PFR 7015 A
PTEN del-TECT™ Four Color	PTEN		PFR 7032 A

References

1. Lotan, *et al.* Mod Pathol. 2015 Jan;28(1):128-37 2. Kim, *et al.* Cancer Res. 2007 Sep 1;67(17):8229-39 3. Locke, *et al.* Clin Cancer Res. 2012 Jan 1;18(1):308-16 4. Newton AC, Trotman LC. Annu Rev Pharmacol Toxicol. 2014;54:537-58 5. Kwak, *et al.* N Engl J Med. 2010 Oct 28;363(18):1693-703 6. Shaw, *et al.* J Clin Oncol 2012;30:(suppl; abstr 7508) 7. Ou, *et al.* J Thorac Oncol 2011;6:942-6 8. De Falco, *et al.* J Clin Endocrinol Metab 2013;98:E811-9 9. Abásolo, *et al.* Clin Exp Dermatol. 2012 Dec;37(8):838-43 10. Kamb, *et al.* Science. 1994;264(5157):436-440 11. Nathanson, *et al.* Clin Cancer Res. 2013 Sep 1;19(17):4868-78 12. Hopman, *et al.* The Journal of Pathology 2007 210(4):412-9 13. Kudela, *et al.* Acta Obstet Gynecol Scand. 2014 93(10):997-1002 14. Scotto L, *et al.* Genes Chromosomes Cancer. 2008 47(9):755-65 15. Brankley, *et al.* J Mol Diagn. 2006 May;8(2):260-7 16. Zheng, *et al.* Am J Pathol. 2004 Jul;165(1):63-9 17. Sandberg AA, Berger CS. J Urol. 1994 Mar;151(3):545-60 18. Knowles MA. Int J Clin Oncol. 2008 Aug;13(4):287-97 19. Tandon AK, *et al.* J Clin Oncol. 1989 Aug;7(8):1120-8 20. Di Leo A, *et al.* Lancet Oncol. 2011 Nov;12(12):1134-42 21. Mendoza G, Portillo A, Olmos-Soto J. Oncol Lett. 2013 Jan;5(1):295-298 22. Neto JC, *et al.* Exp Mol Pathol. 2012 Feb;92(1):20-6 23. Stern H, *et al.* Clin Cancer Res. 2015 Feb 3. pii: clincanres.2993.2014. [Epub ahead of print]

800.799.9499 4040 Pike Lane Concord CA 94520

www.biocare.net